0
Publicado el 11 Enero, 2020 por Redacción Digital en Tecnología
 
 

Iinteractúan luz y materia condensada,

Supercomputadora funcionará a velocidad de la luz

Científicos a cargo de los experimentos ha concluido ahora que los electrones pueden moverse a velocidades de subfemtosegundos, es decir, más rápidas que 10 elevado a -15 segundos, de ser manipulados con ondas de luz.
Compartir

supercomputadora

Los componentes electrónicos contemporáneos, que tradicionalmente se basan en la tecnología de semiconductores de silicio, pueden encenderse o apagarse en picosegundos (es decir, 10 elevado a -12 segundos). Los teléfonos móviles y las computadoras estándar funcionan a frecuencias máximas de varios gigahercios (1 GHz = 10 elevado a 9 Hz), mientras que los transistores individuales pueden acercarse a un terahercio (1 THz = 10 elevado a 12 Hz).

Sin embargo, un grupo de científicos europeos ha concluido ahora que los electrones pueden moverse a velocidades de subfemtosegundos, es decir, más rápidas que 10 elevado a -15 segundos, de ser manipulados con ondas de luz. Los experimentos correspondientes fueron llevados a cabo en la Universidad de Constanza (Alemania) y reportados en una publicación en Nature Physics.

La luz oscila a frecuencias por lo menos 1.000 veces más altas que las alcanzadas por los circuitos puramente electrónicos. Así, un femtosegundo corresponde a 10 elevado a -15 segundos, que es la millonésima parte de una billonésima de segundo.

Leitenstorfer y su equipo científicos europeos ha concluido ahora que los electrones pueden moverse a velocidades de subfemtosegundos, es decir, más rápidas que 10 elevado a -15 segundos, de ser manipulados con ondas de luz.

Para el experimento, los físicos montaron una instalación experimental con antenas de oro y un láser superrápido, capaz de irradiar 100 millones de impulsos de luz por segundo. Como resultado, lograron permutar la corriente eléctrica con una velocidad de unos 600 attosegundos (600X10 elevado a -18).

El estudio abre nuevas oportunidades para comprender cómo interactúa la luz con la materia condensada, permitiendo la observación de fenómenos cuánticos a escalas temporales y espaciales sin precedentes.

Compartir

Redacción Digital

 
Redacción Digital